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Information processing in the rodent hippocampus is fundamentally shaped by internally generated sequences
(IGSs), expressed during two different network states: theta sequences, which repeat and reset at the ~8 Hz theta
rhythm associated with active behavior, and punctate sharp wave-ripple (SWR) sequences associated with wakeful
rest or slow-wave sleep. A potpourri of diverse functional roles has been proposed for these IGSs, resulting in a
fragmented conceptual landscape. Here, we advance a unitary view of IGSs, proposing that they reflect an inferential
process that samples a policy from the animal’s generative model, supported by hippocampus-specific priors. The
same inference affords different cognitive functions when the animal is in distinct dynamical modes, associated with
specific functional networks. Theta sequences arise when inference is coupled to the animal’s action—perception
cycle, supporting online spatial decisions, predictive processing, and episode encoding. SWR sequences arise when
the animal is decoupled from the action—perception cycle and may support offline cognitive processing, such as
memory consolidation, the prospective simulation of spatial trajectories, and imagination. We discuss the empirical
bases of this proposal in relation to rodent studies and highlight how the proposed computational principles can
shed light on the mechanisms of future-oriented cognition in humans.

Keywords: future-oriented cognition; internally generated hippocampal sequences; generative model; prediction;
prospection

Introduction periods, subjects often report thinking about the
future.® Crucially, the DMN is also engaged dur-
ing on-task processing; as in the case of sleep,
shared brain circuits support both online situated
action coupled to the action—perception cycle and
detached, offline cognitive processing that escapes
the present. To understand cognition, we must
understand the principles that govern neural cir-
cuits during and between these stimulus-driven or
internally generated “dynamical modes.””®

A model system for exploring how neural circuits
switch between stimulus-driven (also stimulus-
evoked) and internally generated (spontaneous or
awake brains have periods of unconstrained, spon- self—grganiz?d) moFles ‘is the hippocampus, and. its
taneous patterns, as activity in the default mode net- role in sPat1al navigation as well' as .the encoding
work (DMN) during off-task periods illustrates.”™ and r.etrleva.l of eplSO.dIC. memories in support of
When quizzed about their thoughts during these adaptive action. Studies in rodents have provided

It’s a poor sort of memory that only works backwards.
—Lewis Carroll

A fascinating open question in cognitive neuro-
science is how we escape the present,' or how we
temporarily detach from the here and now of the
current sensorimotor cycle to engage in forms of
cognition such as prospection, imagination, and
mental time travel. The classic example of reduced
sensory awareness is sleep, which enables the inter-
nal generation of rich patterns of neural activity
only weakly constrained by sensory input. However,
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Figure 1. Three kinds of sequences in an ensemble of place cells recorded from hippocampal subfield CA1: behavioral sequence
(blue), theta sequences (red), and sharp wave-ripple (SWR) sequence (green). (A) Activity of an ensemble of hippocampal place
cells as an animal runs a spatial trajectory (in this case, a left turn on a T-maze); a spatiotemporal sequence of place cells is activated,
starting with the place cell with its field at the start of the maze (bottom row; each row shows spikes from a single place cell), and
ending with the place cell with its field at the end of the maze (top row). Inset: Zooming in on the activity in the gray square shows
repeating, compressed theta sequences (red lines). (B) Activity from the same ensemble as the animal rests away from the track
(but in the same room). Two synchronous bursts of activity, associated with network events called SWR complexes, punctuate
an otherwise quiet (non-theta) activity regime. The second SWR activates cells in an order similar to that seen during behavior,
forming an SWR sequence (green line). Data are adapted from Ref. 191.

access to the content of hippocampal dynamics at
fast time scales and allow for temporally precise
experimental interventions, providing an ideal van-
tage point to probe detached and future-oriented
cognition.”™" Internally generated activity occurs
in different brain states (awake and attentive, awake
rest, different sleep stages), with most experimental
studies focusing on one state only. Similarly, indi-
vidual laboratories typically study such activity in a
narrow behavioral setting, different from that stud-
ied in other laboratories. These factors have cre-
ated a fragmented conceptual landscape containing
a number of interpretations. Here, we aim to pro-
vide a unified theoretical viewpoint on the different
forms of internally generated activity in the rodent
hippocampus, consider the functions proposed for
these phenomena, and finally provide the bones of a
unifying account, whose implications may extend to
the study of human future-oriented cognition, too.

Internally generated sequences
in the hippocampus and their roles
in detached cognition

Studies of information processing in the rodent hip-
pocampus have historically focused on “place cells.”
These neurons tend to be active in specific, spa-
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tially restricted areas of a given environment, such
that the animal’s location can be accurately decoded
from an ensemble of simultaneously recorded place
cells.?®2! It is now well established that the activity
of place cells encodes other variables beyond loca-
tion alone;?>?* moreover, hippocampal cells can tile
nonspatial experience with restricted firing fields
(“time cells” or “episode cells”;*#*) consistent with
the view that hippocampal activity encodes a “con-
tinuous record of attended experience.”?® Never-
theless, examining the activity of place cells from a
purely spatial viewpoint continues to provide a use-
ful access point into information processing in the
hippocampus, as we discuss next.

By moving around in space, an animal will tra-
verse sequentially the firing fields of a number of
place cells, resulting in a spatiotemporal sequence
of neural activity at the time scale of behavior.
This sequence is readily apparent from a raster-
plot in which the rows, corresponding to neu-
rons, are ordered according to the location of their
place field (Fig. 1A). Note that approximately 7 sec-
onds elapse between the activation of the first place
cell, at the bottom of the plot, and the last place
cell (at the top). Interestingly, there is additional
structure in this sequential activation of place cells:
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at the time scale of the theta rhythm (~8 Hz in
moving rodents), repeating, temporally compressed
sequences are formed (Fig. 1A, inset). In these theta
sequences, place cells are active in the same order as
in the slower time scale behavioral sequence. Theta
sequences are compressed because the time between
the peak firing rates of a given pair of cells within
a theta cycle is shorter than the time between peak
firing rates of the same cells at the overall behavioral
time scale (estimates of this compression factor vary,
but are in the 5-10x range;*’ " note, however, that
these sequences do not necessarily unfold at a con-
stant speed, so any compression factor is an approx-
imation). They are repeating because during each
theta cycle, a new sequence is initiated and termi-
nated. As a general rule, theta sequences are local
(i.e., include the animal’s current location) and for-
ward (i.e., proceed in the same direction the animal
is moving). The period of the theta cycle limits the
space that can be spanned by a single theta sequence,
although it should be noted that there is substantial
diversity between theta sequences, and the late phase
of the theta cycle, in particular, is associated with a
less precise spatial representation (and perhaps even
reverse order’??).

Theta sequences are of interest because their
structure appears to be internally generated: sensory
input as it presents to the animal does not start out
with repeating, compressed structure at the theta
time scale. Determining the mechanistic basis of
theta sequence generation is a topic of active experi-
mental and computational work, discussed in detail
elsewhere (including the connection with the single-
cell phenomenon of theta phase precession®*);
here, we focus on the possible functional benefits
of organizing activity in this striking way.

The main proposals in the literature tend to
emphasize two quite different ideas: (1) that theta
sequences reflect online, short time scale predictions
of possible courses of action and their outcomes,
useful in decision making,® and (2) that theta
sequences facilitate the initial storage of episodic-
like memories by arranging spike times to be
conducive to spike timing—dependent plasticity.*
Both of these ideas have proven to be difficult to
test directly, although there is indirect support for
both. Striking experimental observations of theta
sequences extending alternately down one arm and
then another as animals appear to deliberate at
choice points are suggestive of a role in planning,*®
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but in that particular experiment, animals’ choices
could not be predicted from the content of theta
sequences. A subsequent study!! found a relation-
ship between the length of theta sequences and the
goal animals subsequently ran to, although in these
and many other recording studies it is unclear if
these activity patterns were in fact contributing
to behavior. Similarly, the link to plasticity is also
indirect. In a limited number of studies in which
pharmacological manipulations have disrupted
theta sequences,”””® memory performance was
also disrupted, although it remains unclear to what
extent this deficit results from encoding, retrieval,
or nonsequence-specific sources. In general, there
is a large body of correlative evidence linking the
properties of the theta rhythm to both memory
encoding and retrieval,®*! but relating these to
content (i.e., decoded theta sequences) continues to
be an experimental challenge that precludes precise
interpretations.

A second type of internally generated activity in
the hippocampus occurs during sharp wave-ripple
(SWR) complexes, punctate events associated with
highly synchronous spiking.** SWRs generally occur
when the animal is at rest but awake, or in slow-
wave sleep, and not when moving. However, partic-
ularly in novel environments, the boundary between
high-gamma oscillations and SWR is blurred, and
it has been reported that SWRs occur in animals
during exploration.***¢ During SWRs, place cells
can fire in similar order to that seen during behav-
ior, prompting the familiar term “replay.” As with
theta sequences, the timing of these SWR sequences
is compressed relative to behavior, with estimates
of the compression factor ranging 10—40x ;2447 but
note here too that the speed is likely not constant.'
Unlike theta sequences, however, SWR sequences
can be forward and backward,**°° even when the
animal has not actually run the behavioral sequence
in the backward direction. SWR sequences can
include the animal’s current location, but often do
not, instead spanning a trajectory on the opposite
side of a large T-maze®! or a trajectory in a differ-
ent maze entirely.>?> Multiple SWRs can be chained
together, with the next SWR sequence starting where
the previous one left off, to span long distances.?’
While early studies emphasized the content of SWR
sequences as replay, several studies have shown
that SWR sequences do not simply reflect recent
experience, but can include trajectories toward an
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upcoming goal, be biased away from the currently
rewarded trajectory, be novel combinations of pre-
viously experienced paths, and be even trajectories
that have not been experienced at all*!%4351:53:54 (but
see Ref. 55).

Early theories about SWRs proposed that they
contribute to systems consolidation (i.e., a way for
time-limited memories stored in the hippocampus
to be consolidated into neocortical memory
structures®®). This idea is supported by studies
interrupting SWRs during offline processing
(sleep) that found impairments in the acquisition
of hippocampus-dependent spatial tasks®’>® (see
also Ref. 59) and activity in cortical and subcortical
structures temporally aligned to the SWR.®-6?
However, this view does not explain why SWRs are
frequently observed during pauses in task perfor-
mance and appear to signal trajectories leading to a
goallocation (prospective) rather than replaying the
recently taken trajectory (retrospective).'>%> Inter-
rupting SWRs in the awake state, during task per-
formance, led to a performance impairment on the
outbound leg of an alternation task (which required
the animals to remember the identity of the previous
trial) but not the inbound leg (which required no
working memory).!* These observations are more
in line with an interpretation of awake SWRs as
memory retrieval or behavioral planning,*>646>192

From the above review of the properties of theta
sequences and SWR sequences, the main modes
of internally generated activity in the hippocam-
pus, a number of open issues are apparent. What
is the relationship between theta sequences and
SWR sequences? How can we reconcile the differ-
ences in content of SWR sequences observed on
different tasks? How can the underspecified ideas of
consolidation and planning be made more specific
as to produce testable predictions and new ideas
for experiments and interpretation? To address the
above issues, we consider both kinds of internally
generated sequences (IGSs) as process components
of an overall generative model architecture that sup-
ports both adaptive action control and detached
cognition, by operating at different dynamical
modes (stimulus tied and internally generated) and
by forming functional networks that include differ-
ent brain areas, depending on task demands (see
Fig. 2 for a schematic of our overall proposal). This
would imply that detached cognition taps the same
neurocomputational resources (e.g., those produc-

Hippocampal sequences and future-oriented cognition

ing sequential neuronal activity) that afford situ-
ated action within action—perception cycles.'”! For
this to be possible, the same underlying mecha-
nisms must be flexible enough to operate in differ-
ent (stimulus-tied and internally generated) modes
and at different time scales (i.e., time compression)
while also engaging different brain networks in a
task-dependent way. To understand how this may be
possible, below we discuss computational principles
that may underlie sequential neuronal activity and
its role across action—perception, memory function,
and prospection within our architecture.

A computational perspective on IGSs

The starting point of this proposal is that the hip-
pocampus forms internal generative models jointly
with other brain areas, which can be engaged (or
not) depending on task demands, including the
entorhinal cortex (EC), the ventral striatum (VS),
and the prefrontal cortex (PFC).%? The notion of
generative models is central in leading neurophys-
iological theories of brain structure and function,
such as predictive coding, the free energy prin-
ciple, and the Bayesian brain,*®®” and is congru-
ent with proposals emphasizing the constructive
nature of hippocampal memories and its role in
imagination.>®® According to these converging per-
spectives, brains are statistical inference devices
that gradually acquire generative models, which
encode the statistics of the environment and of
agent—environment interactions (i.e., contingencies
between actions, sensations, and rewards). The lat-
ter are especially important, as ultimately the brain
uses generative models to perform inference in the
service of adaptive action.

As regularities in the exteroceptive, interocep-
tive, and proprioceptive domains unfold at different
time scales, generative models include various hier-
archical levels, which influence one another con-
tinuously and reciprocally, in both bottom-up and
top-down directions.*” In predictive coding par-
lance, higher hierarchical levels propagate predic-
tions (e.g., about an expected sensory stimulus)
downward through the hierarchy, while lower hier-
archical levels propagate prediction errors upward
(e.g., difference between expected and sensed stim-
ulus), and the impact of the “messages” is weighted
by their (inverse) uncertainty or precision. This
process can be cast with reference to Bayesian
inference, if one considers that prior beliefs are
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Figure 2. Schematic illustration of different modes within an overall generative model architecture for prefrontal cortex—
hippocampus interactions. The different modes, illustrated in the rounded rectangular panels, are organized along a continuum
of constraints from sensory input and task demands. At one extreme, corresponding to full engagement of the hippocampus in
the task (bottom left panel), the theta rhythm coordinates an action-perception cycle in which theta sequences create short-term
predictions, based on the generative model, that are integrated with sensory input and prediction errors propagated back up to the
model. In this theta mode, time-limited encoding of ongoing experience, consisting of episodic-like memory traces, is facilitated by
repeating, compressed theta sequences and the associated predictive processing. Top left panel: SWRs shaped by current sensory
input are samples from the generative model relevant to the current task and can be used for planning and inference. Their content
will reflect current task demands, and will tend to be prospective (e.g., tracing paths to a goal). Top right panel: During offline states,
SWR sequences are the vehicles for signaling the content of previously encoded memory episodes (bottom left panel) to cortical
regions for model updating (systems consolidation). This consolidation process occurs in the absence of sensory input and is instead
driven by short-term plasticity on intrahippocampal synapses. In this mode, SWR content reflects recent experience. Bottom right
panel: In the absence of recent short-term plasticity in the hippocampus, SWRs are generated that do not reflect recent experience,
but instead serve to improve the generative model by enforcing self-consistency, finding simpler models to prevent overfitting and
avoiding catastrophic interference.

iteratively revised as novel information acquired
that is (in)compatible with expectations, thus form-
ing posterior beliefs that are more informed. The
general objective of a predictive coding system is
to minimize prediction error (or free energy*®)—
in which case, predictions are compatible with the
unfolding of sensory events.

The notion of Bayesian inference in (hierarchi-
cal) generative models has been used to explain both
perception’%72 and action.” In perceptual process-

ing, the higher hierarchical levels encode percep-
tual hypotheses (e.g., I am looking a dog) that are
revised on the basis of bottom-up prediction errors
(e.g., hearing a meow, not a bark, as I was expecting)
until prediction error (or free energy) is minimized
and the “correct” hypothesis is identified (e.g., this
is a cat not a dog). However, rather than minimize
prediction error by revising my hypothesis, I can
also minimize it by acting so as to make the hypoth-
esis true. For example, I can make my original (dog)

148 Ann. N.Y. Acad. Sci. 1396 (2017) 144-165 © 2017 New York Academy of Sciences.
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hypothesis true by searching for a dog in the visual
scene and foveating it. In this case, the predictions
propagated by higher hierarchical levels act as goal
states, and engaging arc reflexes minimizes the ensu-
ing prediction errors. This scheme can be extended
to the planning of sequences of actions (or poli-
cies) if the agent can predictively compare the (inte-
gral of) free energy or surprise conditioned on a
series of successive actions (e.g., whether turning
twice right or twice left will bring to the expected
goal state).”*”> This example requires engaging the
generative model to internally generate and evalu-
ate sequences of predictions. A closely related idea
is called planning as inference, in which the cur-
rent and desired (goal) states are fed to the system
(“clamped”) and Bayesian inference is used to “fill
gaps” (i.e., to find a trajectory between the cur-
rent and desired goal location).”®”® These planning
methods that rest on Bayesian inference over gener-
ative models (that encode transitions between states
and probabilistic relations between states and obser-
vations) will become relevant when we next discuss
possible neuronal implementations of prospection.

Various modeling studies have applied the idea
of probabilistic (Bayesian) inference in generative
models to hippocampal function (and surround-
ing regions).””* One study highlights that the
hippocampus (areas CAl and CA3), the EC, and
prefrontal areas have the right connectivity to
encode the agent’s generative model of its envi-
ronment and to support state estimation, sensory
imagery, and other functions, depending on the
flow of the information between the areas.”® In this
model, areas CA3—CA1 support state estimation by
combining path integration and sensory input from
the lateral and medial EC, respectively. The same
architecture can also afford sensory imagery when
the medial EC receives (virtual) motor commands
from the PFC, uses path integration to update the
(virtual) position, and communicates it to areas
CA3-CAl, which in turn uses its projections to
lateral EC to produce predictions of sensory states.

Another proposal posits that a prediction-
matching mechanism is implemented within a hier-
archical architecture that includes the EC, CAl,
and CA3 at increasingly higher hierarchical levels.*’
In this perspective, the most active cell assemblies
in CA3 encode predicted positions, whereas EC
encodes current inputs. It is when top-down (pre-
dictive) and bottom-up (sensory) streams “match”

Hippocampal sequences and future-oriented cognition

that CALl cells fire, thus encoding the updated ani-
mal location. This view uses predictive coding to
predict current inputs, but it can be expanded
to also cover predictions about future stimuli or
locations. Accordingly, it has been proposed that
the first half of each theta cycle may be stimulus
driven and compute the current position (using
sensory and path integration information from
the lateral and medial EC, respectively), whereas
the second half may depend on intrinsic network
dynamics involving both grid cells in the medial EC
and the hippocampus and compute future spatial
positions.®

Yet another proposal focuses on a wider brain
network formed by the hippocampus and the
VS, which may encode two components of a
generative model—transitions between locations
and contingencies between locations and rewards,
respectively—affording Bayesian inference of the
best policy or plan.® When uncertain, this system
sequentially samples from the (combined) inter-
nal model to update the “value” of different poli-
cies (say, for turning right or left at a junction),
which results in the coordinated elicitation of long
theta sequences in the hippocampus and of covert
reward expectations in the striatum.* After suffi-
cient experience, this system can select actions based
on “cached” action values without engaging the gen-
erative model (hence in a model-free way®>)—at
least while task contingencies remain stable. This
latter aspect is consistent with evidence that spatial
decisions become hippocampus independent after
sufficient experience.®

Finally, a series of computational studies explored
the idea that various aspects of spatial cognition,
including spatial decision making, route planning,
model selection, vicarious trial and error (VTE),
and the covert evaluation of future spatial tra-
jectories, may be based on probabilistic inference
and a common generative model (implemented
in the hippocampus and surrounding structures),
also discussing various neuronal implementations
of (approximate) Bayesian inference.”-”7%-87:88

By leveraging and extending these and other mod-
els, we discuss below what the notions of statis-
tical inference and generative models can offer to
the study of prospective cognition and the rela-
tions between stimulus-evoked and internally gen-
erated brain activity as applied to theta and SWR
sequences.

Ann. N.Y. Acad. Sci. 1396 (2017) 144-165 © 2017 New York Academy of Sciences. 149
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Inference

It emerges from the aforementioned models that
statistical (Bayesian) inference within generative
models affords a homogeneous—yet very flexible—
form of computation. We argue that hippocampal
IGSs may reflect an inferential process that sam-
ples a sequence from the animal’s generative model
(or sequence generator). During spatial navigation,
sequences code for spatial trajectories, which can
be evaluated (e.g., to check whether it leads to a
goal location) to support use as a plan (or pol-
icy) for navigation. In the absence of active nav-
igation, sequences contribute to the construction
and maintenance of the generative model (imple-
menting a number of processes in support of mem-
ory consolidation). Below, we expand on this idea,
discussing how the same generative scheme affords
various cognitive functions, including faster
prospective processes (e.g., policy selection and con-
trol within action—perception cycles) and slower
processes (e.g., learning and memory consolidation
over longer time scales). The key distinguishing ele-
ment between these two alternatives is the “dynam-
ical mode” under which the animal operates. The
dynamical mode is reflected in the temporal charac-
teristics of brain rhythms: during theta, hippocam-
pal processing is coupled to the action—perception
cycle, whereas, during SWRs, there is weaker or even
total uncoupling from external events.

Theta sequences. How can we represent naviga-
tion to a known goal location as an inference prob-
lem supported via IGSs? Imagine that the animal
knows (i.e., has a model of) the environment and
must form and execute a plan to reach a goal loca-
tion, such as when escaping from a water maze.
It can initially select one (e.g., the best a priori)
among multiple possible policies maintained in its
internal model, by “scoring” them according to their
usefulness to reach the goal. Then, as it navigates,
the animal has to continuously refine this initial
plan (e.g., by filling initially incomplete segments
and reducing uncertainty about current and goal
locations and improving the accuracy of the transi-
tions represented in the internal model) while also
remaining flexible enough to exploit novel oppor-
tunities or reconsider the situation (e.g., consider
other policies) in the light of new evidence. In this
perspective, the core process in goal-directed nav-
igation is an inference (e.g., about the spatial tra-
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jectory to reach a goal) performed on the basis of
the internal model of policies (or plans), and the
main role of sensory stimuli is keeping the inference
“in register”—not triggering actions directly as in
stimulus—response systems. The inference process
is coupled to the animal’s action—perception cycle,
and combines stimulus-tied and internally gener-
ated aspects, the latter crucially including prospec-
tive aspects, such as the covert evaluation of possible
routes.

In Bayesian inference terms, one can think of
the policies as hypotheses (on future trajectories,
or “where to go next”), which continuously com-
pete and are updated in the light of new evidence,
optimized to minimize a measure of distance from
the desired goal state and additional constraints,
such as energy consumption. In principle, this can
be done by testing all policies in parallel before tak-
ing any action, but this can be approximated with
a more parsimonious scheme in which one or a
few candidate policies are considered serially.”>~>
In this scheme, a to-be-tested policy (e.g., the pol-
icy having the highest a priori “score”) is sampled
from the generative model and it generates pre-
dictions, which are evaluated and “kept in regis-
ter” using external inputs (Fig. 3). To formulate a
strong hypothesis, a policy is sampled and evalu-
ated within each theta cycle and the theta sequence
is read out of this process. The first elements of a
theta sequence may be those that are kept in register
using external stimuli (like in state estimation); this
can be done with a predictive-coding style match-
ing of top-down predictions (from the policy) and
bottom-up sensations, such as cues or path integra-
tion signals in the hippocampal-entorhinal system.
The successive elements in the theta sequence repre-
sent predictions propagated forward in time using
the model, reflecting successive inferential updates
of the plan (i.e., predictions about the next states);*
they participate in the plan evaluation by engaging
prefrontal or ventral striatal mechanisms that con-
sider predicted states in relation to goals or reward
expectancies.”®* According to this hypothesis, pol-
icy evaluation would be serial, and different policies
may be evaluated within different (e.g., consecutive)
theta cycles, as occurs in theta flickering or perhaps
also during VTE behavior.’®

This hypothesis assigns theta sequences a more
proactive role compared to self-localization and
short-term prediction®*! by assuming that the span

150 Ann. N.Y. Acad. Sci. 1396 (2017) 144-165 © 2017 New York Academy of Sciences.
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Figure 3. Schematic illustration of theta sequences within an inferential framework that evaluates (and uses) a candidate policy
during action—perception cycles. One policy is evaluated for each theta cycle. Potentially, the sequence of states predicted by the
policy spans an entire trajectory from start to goal location; however, only a part of it can be expressed within a single theta cycle
(e.g., a portion of the plan, from the current location to a goal or another relevant location). Within each theta cycle, it is possible
to evaluate the quality of the proximal sensory predictions of a policy (early in the theta cycle) and/or the relation between its distal
aspects and current goals (later in the theta cycle). The former part roughly corresponds to state estimation and uses active sensing
to temporally coordinate descending predictions and incoming stimuli, such as cues from the entorhinal cortex. The latter part
taps goal-related information (or prior preferences) in areas such as the ventral striatum and the prefrontal cortex. This evaluation
results in a “score” for the policy that increases (or decreases) the probability that it will be used for action selection or the next

evaluation (in successive theta cycles).

of prediction is not limited a prioribut can “stretch”
(to cover, e.g.,long distances) when necessary. In this
perspective, what is decoded as a theta sequence may
be the limited readout of a more sophisticated (and
far-looking) inferential process that runs covertly
to continuously evaluate and select policies—an
implicit trajectory through the plan’s state space,
which can be “read” sequentially by downstream
regions.”? The readout is limited, given that infer-
ence occurs within theta cycles, which allow for
a small number of elements to be encoded (e.g.,
5-10 future locations predicted under the current
policy®®). Nevertheless, the mechanism can be flexi-
ble and cover different portions of the plan depend-
ing on task demands. Theta sequences are usu-
ally short, possibly reflecting a current focus of the
inference on short-term predictions; in some cases,

they can stretch to cover trajectories toward distal
goals!! or (when the goal is uncertain) to sequen-
tially evaluate and select between alternative spatial
plans, as in VTE.* Theta sequences may temporar-
ily be centered behind or ahead of the animal,'”
suggesting that different parts of the plan may be
inferred or updated (predicted or postdicted) over
time depending on task demands—possibly relying
on a theta-based segmentation of long streams of
experience into meaningful subparts.!”
Importantly, rhythms and other dynamical phe-
nomena are part and parcel of the inference, in
particular, for its temporal aspects and predictive
timing**® (i.e., predicting when something will
occur as opposed to what will occur). The tempo-
ral alignment of top-down predictions and bottom-
up sensory streams within each theta cycle may
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be coordinated by active sensing mechanisms.’®

Internally generated theta oscillations may become
coordinated (or even phase locked) with external
rhythmic sensory stimuli gathered by active sensing
routines, such as whisking and sniffing, which also
occur at theta frequency,””?® if the onset of these
events “phase-resets” hippocampal oscillations”—
coherent with the idea that action contributes to
couple the intrinsic brain rhythms to the dynam-
ics of external events.!” This implies that theta
phase resets may occur to bring specific theta phases
in alignment with expected timing of external
events!”!—a phenomenon that may be more visible
in conditioning experiments (where cues are pre-
sented with predictable timing) than in typical spa-
tial navigation tasks. The (rhythmic) entrainment
of slow cortical oscillations to the stimulation rate
would also enhances perceptual sensitivity,'> with
the theta cycle acting as a filter that increases the gain
of signals collected at the right phase and suppresses
the other (as noise). Finally, dynamical phenomena,
such as synchronization between rhythms in differ-
ent brain areas, may regulate the routing of informa-
tion across different brain areas.”? For example, the
temporal alignment of hippocampal activity with
VS reward signals during spatial navigation!%*104
(but also during replay,'®® see below) may index
communication between these two areas, as if they
jointly encode a generative model linking place and
reward information.”®*!% Coupling between the
hippocampus and the PFC may be beneficial instead
when memory demands are high.!%” Thus, we sug-
gest that theta sequences reflect ongoing predictions
of a generative model synchronized to the action—
perception cycle.

SWR sequences. Inferential processes may also
underlie SWR sequences, the second dynamical
mode of the hippocampus (Fig. 4). When the ani-
mal pauses during a task or sleeps, inference can be
temporarily decoupled from the action—perception
cycle and its constraints, such as the necessity to
align predictions to external stimuli collected via
active sensing routines. The ensuing spontaneous
neuronal dynamics—many of which are detected
as SWR sequences—can be interpreted as consecu-
tive samples from a (prior) distribution over poli-
cies or trajectories encoded in the internal model,
which are (relatively) unaffected by external sensory
events, as in “mind wandering.”!%® Modeling stud-
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ies have shown that, if left free from constraints,
the relative frequency of sampled states or trajec-
tories converges on a stationary distribution that is
independent from the initial state of the system.'?
This would imply that measuring spontaneous acti-
vations should in the long run reveal a statistically
optimal model (i.e., a model that is tuned to the
statistics of the environment), as has been observed
in other brain areas.!!

However, several studies have shown that the con-
tent of SWRs can diverge in interesting ways from
uniform distributions, suggesting that SWR con-
tent is not completely decoupled from task demands
and/or experience. It is important to separate these
studies according to the level of task engagement,
starting with the distinction between awake and
sleep SWRs. Early studies of sleep SWRs focused
on sleep directly following behavior and found a
clear contribution of recent experience.!''™'"> The
rate of SWR emission is increased during sleep that
follows novel experience compared with familiar
experience,''* consistent with the generative model
being updated with recently acquired information.
Although a strict interpretation of the term “replay”
implies that SWR content accurately reflects the
statistics of recent experience, the efficient learn-
ing of generative models instead favors preferential
replay of particularly informative or behaviorally
relevant experience!'>!!® circumventing the “real”
statistics of the environment, so that behaviorally
relevant events are over-resampled and thus pref-
erentially encoded in the generative model. The
dynamics (a large increase followed by a slow
decrease) of both the rate of SWRs and what
fraction of SWRs contains detectable sequences
would then reflect meta-control of the resampling
process.!#117:118 [y turn, the coupling of fast-ripple
oscillations may regulate what information is trans-
mitted to other brain areas, such as to communi-
cate with the PFC for the formation of declarative
memories,'!? to keep episodic memories in regis-
ter with changing neocortical representations,'? or
to train a behavioral controller (offline) before a
choice, thus saving resources during the decision-
making process proper.'?! Nevertheless, these views
of SWR content and function are compatible with
a classical “consolidation” account in which recent
experience is used to update a generative model.

Beyond recent experience, the generative model
view suggests that other factors should contribute
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Figure 4. Schematic illustration of SWR sequences within an inferential framework while the animal is decoupled from the
action—perception cycle (e.g., while it sleeps). Here, SWR sequences correspond to resamples from the policy distribution, as coded
in an internal model. In the absence of biases, the resampling would be from the prior policy distribution and can play roles
in structuring the hippocampal internal model (see main text for explanation) or internal models in other brain areas, such as
the prefrontal cortex. Other brain areas can bias this process. For example, prefrontal goal information can bias the process to
preferentially resample policies that reach a known goal site, thus producing SRW sequences that are relevant for planning.

to sleep SWR content as well. These may include the
need to keep the model coherent or self-consistent
as learning progresses, ways to prevent overfitting,
and preventing destructive interference (well-
known ideas in machine learning and connectionist
models®®!?2). For example, the risk of overfitting
(i.e., the tuning of the generative model to noise or
idiosyncratic features of experience that do not gen-
eralize) suggests a process to get rid of experiences
that complicate the model without improving their
predictive power—or model reduction (indeed,
there have been suggestions that, under certain con-
ditions, SWRs may elicit long-term depression'??).
Destructive interference refers to the possibility
that updating one memory trace may adversely
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affect overlapping traces, which may be prevented
by active maintenance of relevant traces that have
not been experienced for some time. Thus, SWR
content during sleep may not be limited to recent
experience content for building generative models,
but may also include processes for maintaining,
tuning, and optimizing such models in a manner
independent of specific recent experience.

Awake SWR activity is more constrained by
sensory input and task demands. Strong constraints
are expected on tasks that require hippocampal
function to perform, such as delayed alternation
and some place-navigation tasks.!*'* On such
tasks, SWR content can reflect operations like recall
and planning that directly support performance
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of the task. Although SWR activity is temporarily
decoupled from the action—perception cycle, SWR
activity can still interact with other brain areas,
such as the PFC,'?41%> from which it can receive,
for instance, goal information.!” In turn, this
information acts as a constraint to the spontaneous
dynamics, which then “drift away” from the (prior)
stationary distribution to converge, for example,
to a plan to the goal,'”> with the same inferential
mechanisms described before. In other words,
during performance of hippocampal-dependent
tasks, awake SWR sequences may reflect inferential
updates for planning in the same way we described
for the first dynamical mode, except that it is
temporarily decoupled from the action—perception
cycle and only uses self-generated information
(e.g., about goal locations). If this hypothesis holds,
then awake SWR and theta sequences may support
planning in a coordinated manner at two different
time scales. Awake SWR sequences may be used to
select an initial policy (to form a rough plan to a
known goal location!>!*!27) before taking action,
and—if needed—theta sequences may evaluate (or
revise) the policy during action—perception cycles
as the animal approaches the goal site; see Ref. 127
for data consistent with such a cooperative view.
Not all awake SWR content necessarily supports
immediate, upcoming behavior. When generative
model output is not needed for task performance,
such as may occur on tasks or task phases that do
not depend on the hippocampus, SWR activity
may uncouple more from task demands. In such
situations, SWR sequences can include content
expected from more offline generative model
updating and maintenance, as discussed for sleep
above. In addition, SWRs may be important to
identify actions that are most informative in
updating the generative model.!*® Thus, awake
SWR content may emphasize recent experience fol-
lowing rewarding or unexpected outcomes,*>312
upcoming constructive trajectories when the hip-
pocampus is needed to perform the task,'>'* and
trajectories that do not lead to a rewarded goal but
to the maximally informative outcome instead>!?
(see below). In sum, SWR sequences may reflect
inferential processes that are temporarily disen-
gaged from the demands of perception—action
loops (and hence more spontaneous compared
with theta sequences) but nevertheless influenced
by different sources of self-generated information,
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thus potentially playing multiple roles in planning,
memory consolidation, and the generation of novel
(imaginary) experiences.

Interestingly, a recent study“® of the primate hip-
pocampus during visual exploration reports fre-
quent SWRs. This suggests that, just as in rodents
exploring novel mazes, there may be task charac-
teristics that can cause the primate hippocampus
to enter into an SWR-dominated state. The mech-
anisms regulating the selection of theta to SWR-
dominated modes, and the transitions between
them, are incompletely known. While we have
emphasized their differences, our computational
framework suggests various ways theta and SWR
sequences may work synergistically in the service
of online behavior. For example, some tasks may
require theta and SWR sequences to play comple-
mentary functions, such as short-term (theta) and
long-term prediction and planning (SWR) or, alter-
natively, encoding (theta) and simulation (SWR),
at fine time scales.'* These tasks may thus require
frequent transitions between dynamical modes and
engage a cyclical relationship between theta and
SWR sequences, with rapid consecutive cycles of
engagement (theta) and detachment (SWR) from
the action—perception cycle while the animal is still
engaged in the task. Understanding the interplay
between theta and SWR sequences remains an excit-
ing avenue for future research.

Generative models

The notion of generative models has been widely
used in the context of brain computations and
especially cortical processing;®*®” thus, one may
ask what is special about generative models in the
hippocampus. An observation that dates back to
Tolman'*® is that the hippocampus may support
the rapid encoding of a cognitive map (a notion
that is not limited to spatial maps, but encompasses
structured information in nonspatial domains?!).
From a computational perspective, there are at least
four (interconnected) aspects of this notion, which
we discuss in order.

Encoding arbitrary statistical relations. One
would expect generative models to be organized
differently for, say, perceptual processing (e.g.,
predicting a ball trajectory) or the encoding of arbi-
trary associations (e.g., digits of a phone number),
because the environmental statistics underlying
these phenomena are different. In perceptual
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processing, predictions can be often considered to
be extrapolations, at least in the sense that changes
from one visual scene to the next one are small.
From a computational perspective, extrapolation
may benefit from “averaging” and generalizing
from numerous previous experiences, and modern
machine learning algorithms excel at this using
big data.!’! Rather, the internal model of the
hippocampus may excel at a fast form of encoding
of more arbitrary, memory-based predictions (e.g.,
for phone numbers). These arbitrary sequences
have a more episodic nature and may require keep-
ing different events separated, not merging them
to form (semantic) averages, because generalizing
from “average” representations may be ineffective
if one has to predict a specific future episode. The
coding of place information may not eschew this
rule, as manifested by the strong pattern separation
of place fields in dentate gyrus and CA3 cell
assemblies.*> Orthogonal representations of this
kind may provide a sufficiently large basis to learn
separated and specific representations for a huge
variety of environments and events, even beyond
spatial codes. The idea that hippocampal generative
models are specialized for the fast encoding (and
recall) of arbitrary sequences would explain the
well-recognized importance of this brain structure
for episodic memory and one-trial learning,'®
even outside spatial domains. As such, it has been
suggested that the spatial and mnemonic functions
are manifestations of a more general role of the hip-
pocampus in representing the relationships between
objects and events in both space and time.!**

Encodingsequences, notjustassociations. Given
the frequent decoding of sequences (rather than just
isolated place cells or pairs) in the hippocampus,
one may speculate that the hippocampal internal
model may be preconfigured to learn sequences or
transitions—or, in other words, that sequences (not
just single elements like place cells) may be first-
order objects in hippocampal coding. Sequential
coding is key across spatial navigation and episodic
memory studies. In spatial navigation, sequential
organization may stem from the fact that the animal
trajectories trace sequences of place cells in space;
but the fact that time-compressed sequences are also
expressed in internally generated activity suggests
that this may be an important dimension of neural
coding, or perhaps an adaptation of neural cod-
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ing to the sequential nature of spatial navigation.
In the episodic memory domain, it has been often
argued that episodes may be coded, organized, and
recalled as sequences having a limited number of
elements.!*>13¢ This perspective may help in rec-
onciling two main ideas in the literature regard-
ing theta sequences, which emphasize their role
in the storage of episodic-like memories'*” or in
online prediction.’® These ideas may be connected
if one considers that they focus on two different
phases (encoding or storage and retrieval or recall,
respectively), but these two processes may operate
synergistically. Theta sequences may be primarily
configured to develop episodic-like memories; but,
once they are developed, these memories may be
flexibly used in the service of multiple cognitive pro-
cesses, such as navigation and decision making.'*®

Sequences as dynamical templates for experience.

Several aspects of hippocampal processing—fast
learning of arbitrary elements, fast remapping
across episodes (which implies that previous asso-
ciations between place cells are no longer valid),
and the possibility to express sequences for never-
experienced routes (preplay)—all suggest that hip-
pocampal sequences may be largely preconfigured in
the model as “dynamical templates”'** to organize
experience, possibly from a limited set of building
blocks.'*” Dynamical templates may be preconfig-
ured to represent the temporal structure of multi-
item events and be recruited immediately without
(at least initially) committing to the “content” of
each item in the sequence; but they also permit to
quickly “bind” their items to the sensory stimuli
experienced one after the other.!*! In this perspec-
tive, the coding of a sequence of place cells would
not be due to synaptic learning between consecutive
place cells but largely to the binding of each item of
a preconfigured sequence to a place cell (although
stimuli may fine-tune sequential information'*).
This may be possible using computational schemes
that form temporal sequences through a state space
of attractors or attractor-like states'*>"1%* or tran-
sient trajectories!®1*? possibly corresponding to
recurrent computations in CA3/CAl circuits (see
also early models of sequential processing such
as Ref. 145). In this perspective, sequences would
not be fully represented in the hippocampus, but
in the coupling of the hippocampus and other
areas, such as the EC. One proposal is that the
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Table 1. Predictions

Pezzulo et al.

Theta sequences

e In common with other models that stress a probabilistic inference interpretation, we expect that theta sequences contain
signals coding for precision (or its inverse, uncertainty). Preliminary support for this idea comes from the observation that

passive transport disrupts theta sequences185

and that experience with a novel environment rapidly improves theta sequence
quality.’® Virtual reality environments, in which the mapping from actions to sensory changes, as well as the transitions in
the sensory world itself, can be systematically manipulated and offer a promising avenue for identifying such signals. As

pointed out by Penny et al.,” such a signal would also allow for optimal multisensory integration.

e The proposal that theta sequences encode precision implies that the impact of prediction errors will depend on the degree of
precision at the time of the error. Episodic memory traces are only encoded in the hippocampus when a sufficiently large
prediction error occurs and therefore requires a certain amount of precision in the prediction. Consistent with this idea,
animals require a minimum amount of experience in a novel context before they will associate that context with an
unpredicted shock.'$

e Manipulations that disrupt theta sequences affect both “encoding” and “retrieval” functions of hippocampal-dependent
memory. For instance, Robbe et al.'¥” found that systemic cannabinoids reduced animals’ performance on a delayed T-maze
alternation task; if such disruption would be applied specifically during a sample (encoding) lap and subsequent retrieval laps
(using, for instance, optogenetic manipulation of inputs from the medial septum), impairments would be observed for both.

SWR sequences

e The content of SWRs emitted during sleep will reflect experience according to (1) its recency and (2) its informativeness,
consistent with a consolidation process in which experience stored in the hippocampus can be resampled to update a
cognitive map and cortical knowledge structures. In addition, sleep SWRs contain content that reflects a role in other aspects
of generative model learning, such as improving self-consistency, pruning of model features unlikely to generalize, and
prevention of catastrophic interference between memory traces. As an example of self-consistency, suppose that an animal
has learned that A is connected to B and B is connected to C. Unexpected reward is that received at C after the animal was
placed there, causing it to be associated with a reward value. Replay of the B-C connection could be one way in which B

could also acquire (discounted) value, as can be shown behaviorally.

188,189

e The content of SWRs emitted during waking will reflect those actions that lead to maximally informative outcomes.

Consistent with Gupta et al.,’!

this means that, when an animal is rewarded for choosing only the left arm on a T-maze, the

right arm is the most informative choice and may be more likely to be replayed. In the maze version of spontaneous object

recognition tasks, in which animals are biased to seek out an object they have not seen recently,?®!° SWR content will be

biased toward the most informative object. The sensitivity of SWRs to information content can be probed by experiments

that manipulate the informativeness or epistemic value
Overall

74,75

of places or cues independent of their reward (prediction) value.

e Ifboth theta and SWR sequences stem from the same generative model, manipulations that affect it (e.g., in CA3 or the

medial prefrontal cortex) should affect the content of both kinds of sequences in a coherent manner.

e Iftheta and SWR sequences are parts of a coordinated planning mechanism, suppressing SWR should enhance theta

sequences (and vice versa); see Ref. 127 for preliminary evidence.

e IfIGSs have a truly causal role in behavior and cognition, rather than (for example) being only functional to the readout of

cognitive processing in other brain areas such as the PFC, it should be able to target specific cognitive processes (e.g.,

memory consolidation and planning) by manipulating them.

coding of place cell sequences can be part of a
factorized representation in which the hippocam-
pus supports temporal sequencing (when compu-
tations) while other areas, such as the EC, code for
the content (the what) of sequences.'*! In this per-
spective, the hippocampus would support integra-
tive (what—-where—when or what—where—which!4®)
functions by acting as a hub (and sequential pro-
cessor) of information distributed in various bran
areas. Interestingly, retrieving a single element (e.g.,

the fifth element) from a sequence requires “re-
playing” the sequence until the element is tapped,
as there are no stand-alone indexes or “pointers”
to isolated items of the sequence. This may explain
why experience needs to be replayed sequentially for
memory retrieval or consolidation.*®!2!

Structural priors to form maps. Learning
sequences (e.g., for trajectories) does not automati-
cally produce good maps. Rather, one needs also to
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discover that, for example, the starting point of two
sequences is the same as the end point of another
sequence. From a statistical perspective, if the
hippocampus has to rapidly form cognitive maps,
as in the original notion of Tolman," it would
greatly benefit from strong structural priors,'*’
which reflect (formal) aspects about inputs, such
as the fact that sequences of trajectories in the same
environment should not have gaps (unless there
is a wall or obstacle) or that paths can usually be
traversed in both directions. These priors would
enable the filling of gaps in experience, such as
forming a complete spatial map from a limited set
of temporally separated episodes. In this perspec-
tive, resampling sequences during SWR activity
supports the generation of novel experiences that
recombine other ones in constructive ways that are
consistent with the priors, which would explain
why SWR sequences can reflect novel trajectories
or shortcuts.>® This would resemble the usual
inferential process of predictive coding if one has to
minimize differences (or prediction errors) between
the hypotheses expressed in the priors (e.g., that
sequences must be connected) and current evidence
(e.g., that recently experienced sequences are not
connected). When this is not possible (e.g., when
the experienced trajectories cannot be merged), the
most parsimonious explanation from a statistical
viewpoint would be that these trajectories belong
to two (or more) distinct environments, and this in
turn may help the animal in building multiple maps.
Furthermore, resampling SWR sequences may help
restructuring the internal model (e.g., removing
redundant parameters, biasing its content,!'®!48
and forming state space representations that
organize experience within a spatial context®”!4%).,

The role of the hippocampus in information
seeking. An important feature of generative
models is that, to the extent that they are adaptive,
acquiring information for the purpose of construct-
ing effective models or reducing uncertainty before
a choice has behavioral utility. Many organisms,
including humans, nonhuman primates, and
rodents, are willing to work to obtain information
even in the absence of association with reward
(“curiosity”!>%1°1) thereby following an epistemic
drive.”* Johnson et al!?® pointed out that, in
rodents, active information seeking may depend
on hippocampal function; specifically, the hip-
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pocampus is required for inferring which action is
maximally informative. Extending their proposal to
hippocampal sequences, it is striking to note that the
content of awake SWR sequences may reflect such
a function, including counterintuitive cases such as
that shown in Ref. 51, where animals preferentially
replayed the opposite side of a T-maze. Similarly,
in the case of an aversive task,'”?> SWR sequences
travel to the location to be avoided, which may
be significantly more relevant to the animal than
the alternative, behaviorally neutral path taken. In
some cases, the trajectory toward a (rewarded) goal
may also be the most informative,'>'*%* such that
the planning and information-seeking accounts
overlap, but the two can be explicitly dissociated;
see Table 1 for specific predictions.

Conclusions

Hippocampal I1GSs have been extensively studied
during goal-directed navigation (in rodents), and
they may offer a vantage point to understand how
animal brains temporarily detach from the here and
now to engage in spontaneous or internally directed
actions, which have adaptive value (e.g., for mem-
ory consolidation or planning). We proposed that
stimulus-tied and internally generated modes of
activity may engage the same sequential “inferen-
tial machine” (on the basis of generative models
that the animal maintains of its environment) to
support overt goal-directed action and cover men-
tal activities, including forms of future-oriented
and prospective (but also retrospective) cognition
that share resemblances with the more sophisti-
cated forms—imagination and mental time travel—
studied in humans. Although we have focused on
hippocampal IGSs, sequential neuronal activity has
been reported also in other brain areas, such as the
parietal cortex,'>? the PFC,'>*!* the medial EC,'>
and the striatum'*® of rodents and sensory (olfac-
tory) areas of insects,'>”!°® which may speak for
the generality of the inferential principles described
here.

Several aspects of our proposals remain to be
fully tested empirically. One fundamental question
regards the validity of the inferential scheme pro-
posed here. The computations we have described
can be formalized using probabilistic computa-
tions in active inference,’*”> model-based rein-
forcement learning,“s9 or other methods, such as
Monte Carlo tree search,'®® planning as inference,”®
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and generative (deep) networks.’L161 At the

neuronal level, statistical inference has viable bio-
logical implementations and can be performed via
variational inference® or by iteratively sampling
individual elements or sequences from the inter-
nal model (e.g., using sampling-based probabilistic
inference in recurrent networks, similar to Markov
chain Monte Carlo methods in statistics.!0%162-164)
For example, theta sequences emerge under the vari-
ational scheme of active inference if one considers
that at each (theta) cycle successive elements of the
policy state space are inferred, and the inference pro-
ceeds more rapidly for locations that the animal is
approaching,® which in turn produces a “phase pre-
cession” within this inferential scheme. These and
other formal schemes may be used to test empir-
ical predictions on how rodents solve challenging
navigation tasks or even how humans solve abstract
tasks.!®>"197 Compared with other computational
proposals that also discuss hippocampal function
in relation to generative models,””>"?8788 we have
stressed the idea that hippocampal coding and pro-
cessing may be organized around sequences. Hip-
pocampal generative models may be preconfigured
for sequential processing and the rapid encoding of
arbitrary sequences of events'* in ways that current
machine learning techniques fail to model. Further-
more, we have stressed the importance of tempo-
ral dynamics of probabilistic inference (and predic-
tive timing) to explain various functions that we
have associated with theta and SWR sequences. Two
examples are active sensing and the formation of
declarative memories, which require a fine tempo-
ral coordination within the action—perception cycle
(active sensing) or during the interaction with other
brain areas, such as the PFC (memory consolida-
tion). The validity of the inferential scheme pro-
posed here to address sequential processing and
temporal dynamics remains to be fully tested.

Yet another open question regards the specific
roles and interplay of theta and SWR sequences dur-
ing behavior and cognition. We have proposed that
they may stem from the same generative process
and that their different dynamical signatures (and
functions) may depend on the different dynamical
modes under which they operate, the interaction
with other brain areas, and the input of the gener-
ative model. The extent to which the disruption of
theta or SWR sequences affects behavior may thus
depend on task demands—for example, whether the
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animal is facing a decision on the basis of exter-
nal, episodic input versus prior experiences—or
even disengaged from active tasks (e.g., sleeping)—
because these tasks would imply different con-
straints and inputs for the generative model. Fur-
thermore, several lines of evidence reviewed above
suggest that theta and SWR sequences may interact
(e.g., jointly support planning function or encode-
then-simulate function) and also be nested within
each other at fine time scales (e.g., SWR sequences
occurring between consecutive action—perception
cycles), but these interactions and their behavioral
consequences remain to be completely charted.

Another crucial aspect of this proposal is assessing
the width of the brain networks implied in spatial
navigation and planning. Here, we have focused on a
restricted brain network that includes only the hip-
pocampus, the VS, and the PFC. Clearly, the brain
networks implied in goal-directed navigation are
much wider, and some fundamental aspects of their
functioning and interactions remain unclear (e.g.,
whatare the specificroles of different brain areas and
which aspects of sequential processing are intrinsic
to the hippocampus (e.g., through recurrent con-
nections in CA3) and which originate in other areas,
such as the PFC '%®). Simultaneous recordings from
multiple brain areas and disruption of brain activity
(e.g., through optogenetics) may help in shedding
light on these and other fundamental questions (see
Table 1 for a list of predictions stemming from the
proposed framework).

A corollary of our proposal is that, although
the cognitive requirements of a specific cognitive
task (e.g., goal-directed navigation) are usually
compartmentalized into separate processes (e.g.,
active sensory processing, attention, state and con-
text estimation, working memory of goal location,
route planning, and spatial decisions), there is
a possibility that a single inferential mechanism
simultaneously implements many or all of these
processes, as well as others that we have not dis-
cussed (e.g., context estimation’*1%?). The variety
of functions attributed to SWRs can be reconciled if
one considers that they may stem from a common
generative model, which can flexibly interact with
other brain areas in task-specific ways. Similarly,
sequences of neuronal activity found in the rodent
parietal cortex may simultaneously play multiple
roles in decision making, working memory, and the
coordination of sensory processing.'*?
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Even more intriguingly, our proposal suggests
that the brain may implement distinct cognitive
processes by switching its dynamical mode of
operation and the coupling with other brain areas.
This would imply that the mechanisms supporting
detached cognition may not be fundamentally
different from those operating during the action—
perception cycle; the key differences may lie in
the ways the same underlying computations (e.g.,
inference using a generative model) are triggered
and which information they can access. One can
also speculate that the latter (detached) dynamics
result from the internalization of processes that
originally supported situated action—or that
cognition stems from action.>®170:171

If this perspective is correct, then evidence
on hippocampal IGSs can be used to expose
fundamental mechanisms permitting humans to
“escape from the present” and afford prospective
(future-oriented) or retrospective (past-oriented)
forms of cognition, despite the large conceptual
and methodological distance between the fields
of rodent spatial navigation and human detached
cognition. Our proposal implies that memory recall
and future-oriented processes, such as planning
and imagination, are based on the same inferential
mechanisms (e.g., resampling of a policy, covertly
evaluating it) and tap into internal generative
models in the hippocampus (but also in other brain
areas) in the same way. In short, episodic memory
(or prediction) is not just recall (or extrapolation)
but probabilistic inference using a generative
model. The involvement of a common core (infer-
ential) of mechanisms across multiple domains of
detached and higher cognition—such as episodic
memory, imagination, counterfactual thinking,
mind wandering, prospection, and “time travel”
into the past and the future—may explain why
these abilities recruit shared neuronal circuits.>>!”2

In this perspective, mind wandering may be asso-
ciated with spontaneous thought'”>!”* or the sam-
pling from (the prior distribution of) an inter-
nal generative model that is minimally constrained
from external events, analogous to SWR sequences.
This process may have adaptive roles in memory
consolidation or model reduction. Furthermore, as
for SWRs, the same potentially unbiased (mind
wandering) process can be engaged in various other
ways. It can become oriented toward future (goal)
states, as in the case of planning, when the resam-
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pling process is biased by goal information, or
toward the past, when a cue engages episodic mem-
ory retrieval—as in Proust’s madeleine example. In
other words, the common core (inferential) mecha-
nisms remain the same across multiple domains of
detached cognition, while the orientation (toward
the future or past) and the content (e.g., more
episodic or semantic) depends on the situation or
the ways the resampling is biased.

It is worth noting that the inferential processes
described here in relation to theta and SWR
sequences—but also possibly human future-
oriented cognition—are not (or not necessarily)
conscious. The internal inferential updates of
generative models that implement planning or
deliberation can operate at a time scale below that
of cognition, in the same way that the time scale of
visual saccades is shorter than the time scale of per-
ception. For example, in the computational scheme
for planning introduced in the section on inference,
evaluating each single policy requires multiple
inferential updates, which then need to operate
at a much faster time scale compared with the
action—perception cycle.”>”7>195194 Tt thus remains
to be established under which conditions one can
have conscious access to inferential processes that
implement planning and mind wandering.

The hippocampus has been consistently reported
as an important hub in detached cognitive
processes' 7718 and the brain default network!#!—
a dynamical mode that epitomizes the “detach-
ment” from action—perception cycles in humans.
This has raised questions about the necessity for
detached operations to be episodic or autobio-
graphical, requiring projecting oneself into the past
or future, rather than more mundanely predicting
them.'*® From the computational viewpoint dis-
cussed here, the engagement of the hippocampus
is not mandatory, but it is beneficial when it is nec-
essary to construct events (in the past or the future)
that depend on specific circumstances or when aver-
aging across all evidence (as semantic models do)
would not be accurate.'®?

Still, this constructive process would require
“meshing” content in semantically coherent ways
and hence would require a combination of seman-
tic and episodic processing. We still lack a
detailed understanding of such mixed semantic—
episodic operations. Perhaps understanding how
SWR sequences mesh episodes coherently (e.g.,
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adjacent trajectories but not separated ones®!) may
shed light on how human episodic constructive
memory works (e.g., meshing memories of oneself
atin the grandmother’s house and of oneselfat a past
children’s party to imagine how a children’s party
at the grandmother’s house would be). Progress
in the field may come from studies that directly
probe sequential activity resembling SWR or theta
sequences during human cognitive processing,!8%184
possibly designed to test (and disentangle) alterna-
tive computational models.
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